由于弹性柱销联轴器具有的弹性元件,弹性元件能够产生较大弹性变形和阻尼作用,因此弹性联轴器除了能补偿两轴的相对位移外。还能引起缓冲和吸振的作用。机械传动过程中,传动轴系传递的载荷常常会发生变化,引起载荷的变化原因不一,如电机转速不稳定、工作机的载荷不稳定和轴系中由于转动部件不平衡产生的离心力引起的动载荷都可能引起载荷的变化。载荷的变化很多时候体现为周期载荷、冲击载荷和无规律变化的载荷,而弹性联轴器能够适应载荷的波动,具有缓冲和减振的能力,主要与弹性联轴器的刚度和阻尼有关。联轴器的刚度包括径向刚度、轴向刚度和扭转刚度。而在实际工程中,载荷变化常常是因为扭矩波动引起扭转振动的,所以联轴器影响主要的刚度是扭转刚度。一般情况下,在轴系传动中,系统的其他零部件的刚度都会比弹性联轴器的刚度大很多,因此,在简化的情况下,假设其他零部件的弹性为零,仅考虑联轴器的弹性。用联轴器的扭转刚度作为传动轴系的扭转刚度。
弹性柱销齿式联轴器的基本参数和尺寸主要是针对轴孔直径≧12mm而规定的。而对于轴孔直径≦12mm的联轴器基本参数和主要尺寸没有具体的参考。在实际生产中,有时会用到轴孔直径小于12mm的联轴器,这就要求设计出非标的联轴器。电动机和输出轴间采用小型弹性柱销齿式联轴器联接,原来的结构有时会造成电动机的载荷传递失效。改进前的结构和原理改进前的电动机和联轴器的联接情况是:电动机与半联轴器配合部位为6mm,长度为32mm,轴上无键槽,无法实现键联接传递扭矩,根据电动机的装配要求,电动机与半联轴器孔采用过渡配合之间,扭矩主要靠固定在半联轴器上的两个紧定螺钉传递,在使用过程中,此结构存在下列不足:电动机轴和紧定螺钉之间是线面接触,接触面特别小,传递扭矩有限;螺纹联接不具有防松功能,经过几次拆装和长时间运转,会造成半联轴器轴和电动机轴的相对转动和轴向窜动,致使设备无法工作。
改进后的结构和工作原理针对以上情况,我们改进了半联轴器的结构形式,起先将半联轴器4整体加工成成品,然后用线切割机床沿轴径 的位置将此件分成两件,主件为半联轴器本体附件为锁紧块,改进后半联轴器的主体远离电机端,内孔完整,了电机轴的同轴度要求,电动机轴、主体和锁紧块通过内六角螺钉和弹簧垫圈联接在一起,由于锁紧块式半联轴器加工成品后切割的,因此组装后不会影响半联轴器的主体和电动机同轴度的要求。应用此结构,转矩传递部位有原来的线和面接触变成了面和面的接触,沿轴向接触长度增大,进而增大了电动机和联轴器的接触面积,也可以传递大的扭矩了,内六角螺钉和锁紧块间的弹簧垫圈具有防松作用,在联轴器高速旋转时,内六角螺钉不会松动。应用此结构形式的联轴器,经过实际使用验证,能够很好的实现扭矩的传递,在其它的小型联轴器的结构中,应用此结构,也能达到很多好的效果。
虽然弹性联轴器一般都具有缓冲和吸振功能,但具有某值刚度的弹性联轴器,并不是在任意的变扭矩作用下都能产生减振的效果,有时反而会引起加强烈的振动。因此,只有联轴器的刚度与整个传动轴系的其他参数和载荷协调时,才能产生减振的效果。对于某一己定的传动轴系,转动惯量和固有频率能够 ,如果己知所传扭矩的变化规律,如振幅和频率等,就能建立其轴系在扭转振动的微分方程,对该方程求解,即可 所需联轴器刚度。为了便于求解运动微分方程,需要对传动轴系中联轴器的主动和从动两侧的转动惯量和刚度力学模型进行简化。通常比较典型的是简化为两个等效的圆盘,配置在联轴器的两侧。联轴器在工作中,周期载荷是机械传动中一种比较典型的载荷形式。为了避免发生共振,周期载荷的变化频率与传动轴系的固有频率要错开。方法是改变周期载荷的变化频率或者改变轴系的变化频率。因为载荷的变化频率与主轴的转速有关,而转速是机械性能参数,一般不能随意改变。所以一般是通过改变轴系的固有频率来达到不发生共振的目的,而改变轴系的固有频率一般是改变轴系的转动惯量或刚度,转动惯量与机械结构有关,通过改变转动惯量很难实现,而轴系的刚度很容易改变。所以改变星形弹性联轴器就是为了改变轴系的刚度来实现避开共振的目的。